Is #f(x) =-x^3-(x-2)(x-1)# concave or convex at #x=-1#?

1 Answer
Apr 16, 2017

The function is convex.

Explanation:

We calculate the first and second derivatives.

#f(x)=-x^3-(x-2)(x-1)#

#f(x)=-x^3-(x^2-3x+2)#

#f(x)=-x^3-x^2+3x-2#

#f'(x)=-3x^2-2x+3#

#f''(x)=-6x-2#

There is a point of inflexion when #f''(x)=0#

#-6x-2=0#

#6x=-2#

#x=-2/6=-1/3#

We build a chart

#color(white)(aaaa)##Interval##color(white)(aaaa)##(-oo,-1/3)##color(white)(aaaa)##(-1/3,+oo)#

#color(white)(aaaa)##f''(x)##color(white)(aaaaaaaaaaaa)##+##color(white)(aaaaaaaaaaaaa)##-#

#color(white)(aaaa)##f(x)##color(white)(aaaaaaaaaaaaaa)##uu##color(white)(aaaaaaaaaaaaa)##nn#

At #x=-1#

#f''(-1)=(-6*-1)-2=4#

As #f''(x)>0#, the function #f(x)# is convex.

Also,

#(-1) in (-oo,-1/3)# and the curve is #uu# (convex)

graph{-x^3-(x-2)(x-1) [-12.66, 12.65, -6.33, 6.33]}