Given the function #f(x) = 6(x+2)-3#, what is the inverse function when #x = 21#?

1 Answer
Apr 18, 2017

Inverse function: #f^-1(x) = 1/6x - 3/2#
When #x = 21, f(21) = 135#
When #f^-1(135) = 21#

Explanation:

Given: #f(x) = 6(x+2)-3 = 6x+12 - 3 = 6x + 9#
#f(21) = 135#

To find the inverse function first let #y = f(x)#:
#y = 6x + 9#

Next interchange #x# and #y#:
#x = 6y + 9#

Now solve for #y#:

#x - 9 = 6y#

#x/6 - 9/6 = y#

#y = 1/6x - 3/2#

The inverse function #(f^-1(x)) = 1/6x - 3/2#

#(f^-1(135)) = 1/6*135/1 - 3/2 = 21#