How do you solve the system of equations #8x - 8y = - 16# and #- 2x + 4y = 14#?

1 Answer
Apr 19, 2017

See the entire solution process below:

Explanation:

Step 1) Solve the first equation for #x#:

#8x - 8y = -16#

#(8x - 8y)/color(red)(8) = -16/color(red)(8)#

#(8x)/color(red)(8) - (8y)/color(red)(8) = -2#

#x - y = -2#

#x - y + color(red)(y) = color(red)(y) - 2#

#x - 0 = y - 2#

#x = y - 2#

Step 2) Substitute #y - 2# for #x# in the second equation and solve for #y#:

#-2x + 4y = 14# becomes:

#-2(y - 2) + 4y = 14#

#(-2 * y) - (-2 * 2) + 4y = 14#

#-2y + 4 + 4y = 14#

#4y - 2y + 4 = 14#

#(4 - 2)y + 4 = 14#

#2y + 4 = 14#

#2y + 4 - color(red)(4) = 14 - color(red)(4)#

#2y + 0 = 10#

#2y = 10#

#(2y)/color(red)(2) = 10/color(red)(2)#

#(color(red)(cancel(color(black)(2)))y)/cancel(color(red)(2)) = 5#

#y = 5#

Step 3) Substitute #5# for #y# in the solution to the first equation at the end of Step 1 and calculate #x#:

#x = y - 2# becomes:

#x = 5 - 2#

#x = 3#

The solution is: #x = 3# and #y = 5# or #(3, 5)#