How do you simplify #sqrt(3/16)*sqrt(9/5)#?
2 Answers
Explanation:
Note that if
#sqrt(ab) = sqrt(a)sqrt(b)#
If
#sqrt(a/b) = sqrt(a)/sqrt(b)#
If
#sqrt(a^2) = a#
When simplifying square roots of rational expressions, I like to make the denominator square before splitting the square root. That way we don't have to rationalise the denominator later...
#sqrt(3/16)*sqrt(9/5) = sqrt(3/16)*sqrt((9*5)/(5*5))#
#color(white)(sqrt(3/16)*sqrt(9/5)) = sqrt(3/4^2)*sqrt(45/5^2)#
#color(white)(sqrt(3/16)*sqrt(9/5)) = sqrt((3*45)/(4^2*5^2))#
#color(white)(sqrt(3/16)*sqrt(9/5)) = sqrt(3*45)/sqrt(4^2*5^2)#
#color(white)(sqrt(3/16)*sqrt(9/5)) = sqrt(3*3^2*5)/sqrt((4*5)^2)#
#color(white)(sqrt(3/16)*sqrt(9/5)) = (sqrt(3^2)*sqrt(15))/sqrt(20^2)#
#color(white)(sqrt(3/16)*sqrt(9/5)) = (3sqrt(15))/20#