How do you multiply and simplify #\frac { x ^ { 2} - 9} { x ^ { 2} + 10x + 21} \cdot \frac { x ^ { 2} } { x ^ { 2} - 3x }#?

1 Answer
Apr 24, 2017

#x/(x-7)#

Explanation:

#color(brown)("It is usually constructive to look for parts of an expression that can be")##color(brown)("cancelled out.")#

Comparing the two denominators.

Consider #x^2+10x+21#
#" "#Note that #3xx7=21# and that #3+7=10#.

Consider #x^2-3x#
#" "#Note that if we factor out an #x# we have #(x-3)#
#" "#and we will have an #x+3# when we factorise #x^2+10x+21#

We may, or may not be able to use this. Lets have a 'play' and see what happens.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Write as: #" "(x^2-9)/((x+7)(x+3))xx (cancel(x) xx x)/(cancel(x)(x-3))#

Giving:#" "(x^2-9)/((x+7)(x+3))xx x/(x-3)#

Consider the numerator: #x^2-9#

This is the same as #x^2-3^2" "->" "(x-3)(x+3)#

So now we have:

#((x-3)cancel((x+3)))/((x+7)cancel((x+3)))xx x/(x-3)#

Giving:

#(x-3)/(x+7)xxx/(x-3)#

#(cancel(x-3))/(cancel(x-3))xx x/(x-7)#

# x/(x-7) #