How do you multiply #3r ^ { 3} \cdot 2r ^ { 2} \cdot 3r#?

2 Answers
Apr 24, 2017

See the solution process below:

Explanation:

First, rewrite this expression as:

#(3 * 2 * 3)(r^3 * r^2 * r) = 18(r^3 * r^2 * r)#

Now, we can use these two rules for exponents to complete the multiplication:

#a = a^color(green)(1)# and #x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))#

#18(r^3 * r^2 * r) = 18(r^color(red)(3) * r^color(blue)(2) * r^color(green)(1)) = 18r^(color(red)(3)+color(blue)(2)+color(green)(1)) = 18r^6#

Apr 24, 2017

#3r^3*2r^2*3r=18r^6#

Explanation:

Multiply the constants normally and add the exponents.
Like this,

#color(red)(3r^3*2r^2)*3r#

#color(red)(6r^5)*3r#

#color(green)(6r^5*3r)#

#color(green)(18r^6)#