How do you solve #x- \frac { 1} { 2- 3x } > \frac { 2x - 1} { 2} + \frac { 6x + 1} { 3x - 2}?#

1 Answer
Apr 25, 2017

The solution is #x in (-2/9,2/3)#

Explanation:

Let' simplify the inequality

#x-1/(2-3x)>(2x-1)/2+(6x+1)/(3x-2)#

#x-1/(2-3x)-(2x-1)/2-(6x+1)/(3x-2)>0#

#x-1/(2-3x)-(2x-1)/2+(6x+1)/(2-3x)>0#

#(2x(2-3x)-2-(2x-1)(2-3x)+2(6x+1))/(2(2-3x))>0#

#((2x-3)(2x-2x+1)-2+2(6x+1))/(2(2-3x))>0#

#(2-3x+12x+2-2)/(2(2-3x))>0#

#(2+9x)/(2(2-3x))>0#

Let #f(x)=(2+9x)/(2(2-3x))#

We can build the sign chart

#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##-2/9##color(white)(aaaaaa)##2/3##color(white)(aaaaaaa)##+oo#

#color(white)(aaaa)##2+9x##color(white)(aaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##||##color(white)(aaaa)##+#

#color(white)(aaaa)##2-3x##color(white)(aaaa)##+##color(white)(aaaa)##+##color(white)(aaaa)##||##color(white)(aaaa)##-#

#color(white)(aaaa)##f(x)##color(white)(aaaaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##||##color(white)(aaaa)##-#

Therefore,

#f(x)>0# when #x in (-2/9,2/3)#