Let' simplify the inequality
#x-1/(2-3x)>(2x-1)/2+(6x+1)/(3x-2)#
#x-1/(2-3x)-(2x-1)/2-(6x+1)/(3x-2)>0#
#x-1/(2-3x)-(2x-1)/2+(6x+1)/(2-3x)>0#
#(2x(2-3x)-2-(2x-1)(2-3x)+2(6x+1))/(2(2-3x))>0#
#((2x-3)(2x-2x+1)-2+2(6x+1))/(2(2-3x))>0#
#(2-3x+12x+2-2)/(2(2-3x))>0#
#(2+9x)/(2(2-3x))>0#
Let #f(x)=(2+9x)/(2(2-3x))#
We can build the sign chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##-2/9##color(white)(aaaaaa)##2/3##color(white)(aaaaaaa)##+oo#
#color(white)(aaaa)##2+9x##color(white)(aaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##||##color(white)(aaaa)##+#
#color(white)(aaaa)##2-3x##color(white)(aaaa)##+##color(white)(aaaa)##+##color(white)(aaaa)##||##color(white)(aaaa)##-#
#color(white)(aaaa)##f(x)##color(white)(aaaaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##||##color(white)(aaaa)##-#
Therefore,
#f(x)>0# when #x in (-2/9,2/3)#