In triangle ABC, AD and BE are altitudes and AP and BQ are angle bisectors at A and B respectively, where P lies on CD and Q lies on CE. If #angle# PAD = 6° and #angle#QBE =18° , what is the degree of #angle#BCA?

In triangle ABC, AD and BE are altitudes and AP and BQ are angle bisectors at
A and B respectively, where P lies on CD and Q lies on CE. If #angle# PAD = 6°
and #angle#QBE =18° , what is the degree of #angle#BCA?

1 Answer
Apr 26, 2017

#angleBCA=44^@#

Explanation:

enter image source here

Let #angleABQ=QBC=y, and angleBAP=anglePAC=x#

In #DeltaADB, x-anglePAD+2y=90#
#x-6+2y=90^@#
#=> x+2y=96# ---------------- EQ(1)

In #DeltaAEB, 2x+y-angleQBE=90#
#2x+y-18=90^@#
#=> 2x+y=108# ---------------- EQ(2)

Multiplying EQ(1) by 2, we get
#2x+4y=192# --------------- EQ(3)

Subtracting EQ(2) from EQ(3) yields:
#3y=84, => y=84/3=28#

Substituting #y=28# into EQ(1), we get
#x+2xx28=96#
#=> x=40#

Hence, #angleBCA=180-(angleCAB+angleABC)#
#=180-2(x+y)#
#=180-2(40+28)=44^@#