How do you find the definite integral #int_(pi/2)^((5pi)/2) x^2 cos (1/5x)dx# ?

1 Answer
Apr 29, 2017

Find the indefinite integral
Subtract the indefinite integral evaluated at the lower limit from the indefinite integral evaluated at the upper limit.

Explanation:

Given: #int_(pi/2)^((5pi)/2) x^2 cos (1/5x)dx = #?

Find the indefinite integral:

#int x^2 cos (1/5x)dx#

Use integration by parts:

#intudv=uv-intvdu#

let #u = x^2# and #dv = cos(1/5x)#

Then #du = 2xdx# and #v = 5sin(1/5x)#

Substitute into the formula:

#int x^2 cos (1/5x)dx = 5x^2sin(1/5x)-10intxsin(1/5x)dx" "[1]#

Use integration by parts, again:

#intudv=uv-intvdu#

let #u = 10x# and #dv = -sin(1/5x)#

Then #du = 10dx# and #v = 5cos(1/5x)#

Substitute into the formula:

#-10intxsin(1/5x)dx = 50xcos(1/5x) - 50intcos(1/5x)dx" "[2]#

Substitute equation [2] into equation [1]:

#int x^2 cos (1/5x)dx = 5x^2sin(1/5x)+50xcos(1/5x) - 50intcos(1/5x)dx#

The last integral is trivial:

#int x^2 cos (1/5x)dx = 5x^2sin(1/5x)+50xcos(1/5x) - 250sin(1/5x)#

Please observe that I have not added a constant of integration, because we are going to use the results to evaluate a definite integral:

#int_(pi/2)^((5pi)/2) x^2 cos (1/5x)dx = 5((5pi)/2)^2sin(1/5(5pi)/2)+50((5pi)/2)cos(1/5(5pi)/2) - 250sin(1/5(5pi)/2) - (5(pi/2)^2sin(1/5pi/2)+50(pi/2)cos(1/5pi/2) - 250sin(1/5pi/2))#

#int_(pi/2)^((5pi)/2) x^2 cos (1/5x)dx ~~ 57.171#