How to evaluate #int ln(1-x^9)dx# as a power series?

2 Answers
Mar 1, 2017

# int \ ln(1-x^9) \ dx = -x^10/10-1/2x^19/19-1/3x^28/28-1/4x^37/37 - .... #

The general term being:

# u_n = -x^(9n+1)/(n(9n+1)) #

Explanation:

A standard power series is:

# ln(1+x) = x-1/2x^2+1/3x^3-1/4x^4 + .... \ \ \ # for #|x|<1#

From this we can deduce;

# ln(1-x) = ln(1+(-x) )#
# " " = -x-1/2x^2-1/3x^3-1/4x^4 - .... \ \ \ #

And so:

# ln(1-x^9) = -x^9-1/2x^18-1/3x^27-1/4x^36 - .... #

# :. int \ ln(1-x^9) \ dx= int \ -x^9-1/2x^18-1/3x^27-1/4x^36 - .... dx#
# :. " " = -x^10/10-1/2x^19/19-1/3x^28/28-1/4x^37/37 - .... #

The general term being:

# u_n = -x^(9n+1)/(n(9n+1)) #

May 2, 2017

#1/(1-x)=sum_(n=0)^oox^n#

#int1/(1-x)dx=sum_(n=0)^oointx^ndx#

#-ln(1-x)=C+sum_(n=0)^oox^(n+1)/(n+1)#

#x=0# shows that #C=0#:

#ln(1-x)=-sum_(n=0)^oox^(n+1)/(n+1)#

#ln(1-x^9)=-sum_(n=0)^oo(x^9)^(n+1)/(n+1)#

#color(white)(ln(1-x^9))=-sum_(n=0)^oox^(9n+9)/(n+1)#

#intln(1-x^9)dx=-sum_(n=0)^oointx^(9n+9)/(n+1)dx#

#color(white)(intln(1-x^9)dx)=C-sum_(n=0)^oox^(9n+10)/((9n+10)(n+1))#

#x=0# shows #C=0#:

#intln(1-x^9)dx=-sum_(n=0)^oox^(9n+10)/((9n+10)(n+1))#