How to evaluate #int ln(1-x^9)dx# as a power series?
2 Answers
# int \ ln(1-x^9) \ dx = -x^10/10-1/2x^19/19-1/3x^28/28-1/4x^37/37 - .... #
The general term being:
# u_n = -x^(9n+1)/(n(9n+1)) #
Explanation:
A standard power series is:
# ln(1+x) = x-1/2x^2+1/3x^3-1/4x^4 + .... \ \ \ # for#|x|<1#
From this we can deduce;
# ln(1-x) = ln(1+(-x) )#
# " " = -x-1/2x^2-1/3x^3-1/4x^4 - .... \ \ \ #
And so:
# ln(1-x^9) = -x^9-1/2x^18-1/3x^27-1/4x^36 - .... #
# :. int \ ln(1-x^9) \ dx= int \ -x^9-1/2x^18-1/3x^27-1/4x^36 - .... dx#
# :. " " = -x^10/10-1/2x^19/19-1/3x^28/28-1/4x^37/37 - .... #
The general term being:
# u_n = -x^(9n+1)/(n(9n+1)) #