Question #ceca6

1 Answer
May 3, 2017

The characteristic equation is:

#D^3+3D^2+3D+1 = 0#

Or:

#(D+1)^3 = 0 implies D = -1#

Repeated eigenvalues means that we have a complementary solution in the form:

#y_c = e^(-x) (Ax^2 + Bx + C)#

For the particular solution, we use trial solution:

#y_p = e^(-x) rho(x)# where #rho# is a polynomial in #x#

#Dy_p = - e^(-x) rho + e^(-x) rho' = e^(-x) (- rho + rho')#

#D^2y_p' = - e^(-x) (- rho + rho') + e^(-x) (- rho' + rho'') = e^(-x) (rho - 2 rho' + rho'')#

#D^3y_p = - e^(-x) (rho - 2 rho' + rho'') + e^(-x) (rho' - 2 rho'' + rho''') = e^(-x) ( - rho + 3 rho' - 3 rho'' + rho''' )#

And adding it all up means #(D^3+3D^2+3D+1)y_p= x^2 e^-x# amounts to #e^(-x) rho''' = x^2 e^-x# so:

# rho''' = x^2#

#implies rho'' = 1/3x^3 + beta#

#implies rho' = 1/12 x^4 + betax + gamma #

#implies rho = 1/50 x^5 + beta/2x^2 +gammax + delta#

The #beta, gamma, delta# terms are already in the complementary solution so we are left with:

#y = y_c + y_p = e^(-x)(x^5/60 + Ax^2 + Bx + C)#