What is #sqrt(21x^3) * sqrt(3x^2)#?

1 Answer
May 3, 2017

See the entire solution process below:

Explanation:

First, use this rule for multiplying radicals:

#sqrt(a) * sqrt(b) = sqrt(a * b)#

#sqrt(21x^3) * sqrt(3x^2) = sqrt(21x^3 * 3x^2) = sqrt((21 * 3) * (x^3 * x^2)) =#

#sqrt(63x^5)#

Next, use the same rule only this time in reverse to rewrite the expression as:

#sqrt(63x^5) = sqrt(9x^4 * 7x) = sqrt(9x^4) * sqrt(7x) = +-3x^2sqrt(7x)#