How do you evaluate the integral #intx^nlnxdx#?
1 Answer
May 6, 2017
For
For
Explanation:
#I=intx^nlnxdx#
Use integration by parts. Let:
#{(u=lnx,=>,du=1/xdx),(dv=x^ndx,=>,v=x^(n+1)/(n+1)):}" "" "" "(n!=-1)#
Then:
#I=lnx(x^(n+1)/(n+1))-intx^(n+1)/(n+1)(1/x)dx#
#color(white)I=x^(n+1)/(n+1)lnx-1/(n+1)intx^ndx#
#color(white)I=x^(n+1)/(n+1)lnx-1/(n+1)(x^(n+1)/(n+1))#
#color(white)I=(x^(n+1)((n+1)lnx-1))/(n+1)^2+C#
In the case where