How do you evaluate the integral #intx^nlnxdx#?

1 Answer
May 6, 2017

For #n=-1#: #(lnx)^2/2+C#

For #n!=-1#: #(x^(n+1)((n+1)lnx-1))/(n+1)^2+C#

Explanation:

#I=intx^nlnxdx#

Use integration by parts. Let:

#{(u=lnx,=>,du=1/xdx),(dv=x^ndx,=>,v=x^(n+1)/(n+1)):}" "" "" "(n!=-1)#

Then:

#I=lnx(x^(n+1)/(n+1))-intx^(n+1)/(n+1)(1/x)dx#

#color(white)I=x^(n+1)/(n+1)lnx-1/(n+1)intx^ndx#

#color(white)I=x^(n+1)/(n+1)lnx-1/(n+1)(x^(n+1)/(n+1))#

#color(white)I=(x^(n+1)((n+1)lnx-1))/(n+1)^2+C#

In the case where #n=-1#, the integral is #intlnx/xdx#. With the substitution #t=lnx# this becomes #inttdt=t^2/2=(lnx)^2/2+C#.