How do you solve #\frac { 16} { x } = \frac { 5} { 2}#?

2 Answers
May 8, 2017

See a solution process below:

Explanation:

First, multiply each side of the equation by #color(red)(2)color(blue)(x)# to eliminate the fractions while keeping the equation balanced:

#color(red)(2)color(blue)(x) xx 16/x = color(red)(2)color(blue)(x) xx 5/2#

#color(red)(2)cancel(color(blue)(x)) xx 16/color(blue)(cancel(color(black)(x))) = cancel(color(red)(2))color(blue)(x) xx 5/color(red)(cancel(color(black)(2)))#

#32 = 5x#

Now, divide each side of the equation by #color(red)(5)# to solve for #x# while keeping the equation balanced:

#32/color(red)(5) = (5x)/color(red)(5)#

#32/5 = (color(red)(cancel(color(black)(5)))x)/cancel(color(red)(5))#

#32/5 = x#

#x = 32/5#

Or

#x = 6.4#

May 8, 2017

#x=32/5#

Explanation:

#"given a fraction equal to a fraction, we can solve using"#
#color(blue)"cross-multiplication"#

#color(blue)(16)/color(red)(x)X^=color(red)(5)/color(blue)(2)#

#"multiply terms in blue and terms in red together and equate"#

#color(red)(5x)=color(blue)(16xx2)#

#rArr5x=32#

#"divide both sides by 5"#

#(cancel(5) x)/cancel(5)=32/5#

#rArrx=32/5#

#color(blue)"As a check"#

Substitute this value into the left side and if equal to the right side then it is the solution.

#16/(32/5)=cancel(16)^1/1xx5/cancel(32)^2=5/2=" right side"#

#rArrx=32/5" is the solution"#