What is the derivative of #y = sinh^(-1)5x#?

1 Answer
May 10, 2017

# dy/dx = 5/sqrt(1 + 25x^2)#

Explanation:

Let:

# y = sinh^(-1)5x => sinhy=5x#

Differentiating Implicitly we have:

# coshy dy/dx = 5 #
# :. dy/dx = 5/coshy #

Now using the Hyperbolic Identity:

# cosh^2x-sinh^2x -= 1#

We can write:

# cosh^2x - (5x)^2 = 1#
# :. cosh^2x = 1 + 25x^2#
# :. \ coshx = sqrt(1 + 25x^2) #

So then:

# dy/dx = 5/coshy #

# \ \ \ \ \ \ = 5/sqrt(1 + 25x^2)#