What is the derivative of #y = sinh^(-1)5x#?
1 Answer
May 10, 2017
# dy/dx = 5/sqrt(1 + 25x^2)#
Explanation:
Let:
# y = sinh^(-1)5x => sinhy=5x#
Differentiating Implicitly we have:
# coshy dy/dx = 5 #
# :. dy/dx = 5/coshy #
Now using the Hyperbolic Identity:
# cosh^2x-sinh^2x -= 1#
We can write:
# cosh^2x - (5x)^2 = 1#
# :. cosh^2x = 1 + 25x^2#
# :. \ coshx = sqrt(1 + 25x^2) #
So then:
# dy/dx = 5/coshy #
# \ \ \ \ \ \ = 5/sqrt(1 + 25x^2)#