We have #f=X^n-4X^2+X+1#.How to determine the rest of the division of #f# to #g=(x-1)^2#?

1 Answer
May 10, 2017

#r(X)=(n-7)X+6-n#

Explanation:

#f(X)=g(X) q(X)+r(X)#

with #r(X)= aX+b#

and

#f'(X)=g'(X)q(X)+g(X)q'(X)+a#

We know that #g(1)=g'(1)=0# so

#{(1-4+1+1=a+b),(n-2 xx 4+1=a):}#

Solving for #a,b#

#a=n-7#
#b=6-n#

so

#r(X)=aX+b=(n-7)X+6-n#