A triangle has corners at #(2, 1 )#, #( 1, 3 )#, and #(5 , 5 )#. If the triangle is dilated by # 3 x# around #(1, 6)#, what will the new coordinates of its corners be?
2 Answers
Explanation:
The vector equation of a line from
Perform the subtraction within the vector:
The vector equation of a line from
Perform the subtraction within the vector:
The vector equation of a line from
Perform the subtraction within the vector:
Here are the 3 vector equations:
To obtain the new points, evaluate equations [1], [2], and [3] at t = 3
Explanation:
#"let " A=(2,1),B=(1,3),C=(5,5)" and " D=(1,6)#
#"and " A',B',C'" be the images of A,B" and "C#
#"under the dilatation"#
#vec(DA)=ula-uld=((2),(1))-((1),(6))=((1),(-5))#
#rArrvec(DA')=3((1),(-5))=((3),(-15))#
#rArrA'=(1+3,6-15)=(4,-9)#
#color(blue)"--------------------------------------------------"#
#vec(DB)=ulb-uld=((1),(3))-((1),(6))=((0),(-3))#
#rArrvec(DB')=3((0),(-3))=((0),(-9))#
#rArrB'=(1+0,6-9)=(1,-3)#
#color(blue)"--------------------------------------------------"#
#vec(DC)=ulc-uld=((5),(5))-((1),(6))=((4),(-1))#
#rArrvec(DC')=3((4),(-1))=((12),(-3))#
#rArrC'=(1+12,6-3)=(13,3)#
#color(blue)"-------------------------------------------------"#