How do you find the definite integral of #int (1-costheta)/(theta-sintheta)# from #[1,2]#?

1 Answer
May 10, 2017

#ln(2-sin(2))-ln(1-sin(1))~~1.9286#

Explanation:

Step 1. Use #u#-substitution
Let #u=theta-sin(theta)#
#(du)/(d theta)=(1-cos(theta))d theta#

Step 2. Use this new information to create new limits of integration
#theta=1# becomes #u=1-sin(1)#
#theta=2# becomes #u=2-sin(2)#

Step 3. Plug these substitutions into the integral
#int_(1-sin(1))^(2-sin(2))1/u du#

Step 4. Integrate equation with #u#
#int_(1-sin(1))^(2-sin(2))1/u du=[ln(u)]_(1-sin(1))^(2-sin(2))#
#=ln(2-sin(2))-ln(1-sin(1))~~1.9286#