Step 1) Solve the first equation for #x#:
#x + 3y = 8#
#x + 3y - color(red)(3y) = 8 - color(red)(3y)#
#x + 0 = 8 - 3y#
#x = 8 - 3y#
Step 2) Substitute #8 - 3y# for #x# in the second equation and solve for #y#:
#-x + 9y = 16# becomes:
#-(8 - 3y) + 9y = 16#
#-8 + 3y + 9y = 16#
#-8 + (3 + 9)y = 16#
#-8 + 12y = 16#
#color(red)(8) - 8 + 12y = color(red)(8) + 16#
#0 + 12y = 24#
#12y = 24#
#(12y)/color(red)(12) = 24/color(red)(12)#
#(color(red)(cancel(color(black)(12)))y)/cancel(color(red)(12)) = 2#
#y = 2#
Step 3) Substitute #2# for #y# into the solution for the first equation at the end of Step 1 and calculate #x#:
#x = 8 - 3y# becomes:
#x = 8 - (3 * 2)#
#x = 8 - 6#
#x = 2#
The solution is: #x = 2# and #y = 2# or #(2, 2)#