How do you find the interval of convergence #Sigma (3^n(x-4)^(2n))/n^2# from #n=[1,oo)#?
1 Answer
Explanation:
Where
#=3^(n+1)/3^n((x-4)^(2n+2)/(x-4)^(2n))n^2/(n+1)^2#
#=3(x-4)^2(n/(n+1))^2#
And:
#=3(x-4)^2lim_(nrarroo)abs((n/(n+1))^2)#
The limit approaches
#=3(x-4)^2#
Through the ratio test, the series converges when
#3(x-4)^2<1#
#-1/sqrt3 < x-4 < 1/sqrt3#
#4-1/sqrt3 < x < 4+1/sqrt3#
Test the intervals to see if the integral converges at the extremes:
At
#sum_(n=1)^oo(3^n((4-1/sqrt3)-4)^(2n))/n^2=sum_(n=1)^oo(3^n(-1/sqrt3)^(2n))/n^2#
#=sum_(n=1)^oo(3^n(-1)^(2n)(1/sqrt3)^(2n))/n^2=sum_(n=1)^oo(3^n(1/3^n))/n^2=sum_(n=1)^oo1/n^2#
Which converges through the p-series test, so
At
#sum_(n=1)^oo(3^n((4+1/sqrt3)-4)^(2n))/n^2=sum_(n=1)^oo(3^n(1/sqrt3)^(2n))/n^2=sum_(n=1)^oo1/n^2#
Which converges as well. So the interval of convergence is:
#4-1/sqrt3 <= x <= 4+1/sqrt3#