First, multiply each side of the equation by #color(red)(7)# to eliminate the fractions while keeping the equation balanced:
#color(red)(7)(2x + 7) = color(red)(7)(4/7x + 57/7)#
#(color(red)(7) * 2x) + (color(red)(7) * 7) = (color(red)(7) * 4/7x) + (color(red)(7) * 57/7)#
#14x + 49 = (cancel(color(red)(7)) * 4/color(red)(cancel(color(black)(7)))x) + (cancel(color(red)(7)) * 57/color(red)(cancel(color(black)(7))))#
#14x + 49 = 4x + 57#
Next, subtract #color(red)(49)# and #color(blue)(4x)# from each side of the equation to isolate the #x# term while keeping the equation balanced:
#-color(blue)(4x) + 14x + 49 - color(red)(49) = -color(blue)(4x) + 4x + 57 - color(red)(49)#
#(-color(blue)(4) + 14)x + 0 = 0 + 8#
#10x = 8#
Now, divide each side of the equation by #color(red)(10)# to solve for #x# while keeping the equation balanced:
#(10x)/color(red)(10) = 8/color(red)(10)#
#(color(red)(cancel(color(black)(10)))x)/cancel(color(red)(10)) = (2 xx 4)/(2 xx 5)#
#x = (color(red)(cancel(color(black)(2))) xx 4)/(color(red)(cancel(color(black)(2))) xx 5)#
#x = 4/5# or #x = 0.8#