Question #a6c6d

2 Answers
May 17, 2017

#sin(3x)/3-sin^3(3x)/9+C#

Explanation:

First, make a #u# substitution. Let #u=3x#. That means #du=3dx#. We'll have a #1/3# outside the integral:

#1/3intcos^3u#

Split the #cos^3u# into #cosu# and #cos^2u#:

#1/3intcosucos^2u#

Use trig identities on #cos^2u#. #cos^2u=1-sin^2u#

#1/3intcosu(1-sin^2u)#

Do another substitution. To not confuse myself, I'll call my variable #v#. Let #v=sinu#. That means #dv=-cosudu#

#1/3int1-v^2#

This we can integrate. Don't forget the constant:

#1/3(v-v^3/3+C)#

Distribute the #1/3#:

#v/3-v^3/9+C#

Note that I left #C# the same even though I distributed the #1/3# into it. Dividing a constant by #3# will still leave a constant.

Undo the substitutions. Remember that #v=sinu# and #u=3x#:

#sinu/3-sin^3u/9+C#

#sin(3x)/3-sin^3(3x)/9+C#

May 17, 2017

# 1/36(sin9x+9sin3x)+C.#

Explanation:

Recall that, #cos3theta=4cos^3theta-3costheta.#

Replacing #theta# by #3x#, we have,

#cos(3(3x))=4cos^3(3x)-3cos(3x), or, #

#cos9x+3cos3x=4cos^3(3x).#

# :. intcos^3(3x)dx=1/4int(cos9x+3cos3x)dx,#

#=1/4(sin(9x)/9+3sin(3x)/3)#

# rArr intcos^3(3x)dx=1/36(sin9x+9sin3x)+C.#

Enjoy Maths.!