Question #15785

1 Answer
May 17, 2017

#-12/5#

Explanation:

To make the function easier to derive we will isolate #y#.
#5lny=12-3x^2#
#lny={12-3x^2}/5#
#y=e^{{12-3x^2}/5}#

The we find the tangent line, which will be the derivative
#y'=e^{{12-3x^2}/5}(-{6x}/5)#

We then plug in #x=2# to get
#y'(2)=e^{{12-3(2)^2}/5}(-{6(2)}/5)#
#y'(2)=e^{0/5}(-12/5)#
#y'(2)=1(-12/5)#
#y'(2)=-12/5#