How do you factor #36a ^ { 2} - 36a b - 27b ^ { 2}#?

2 Answers
May 19, 2017

9(2a - 3b)(2a + b)

Explanation:

Given, #36a^2-36ab-27b^2 = 9(4a^2-4ab-3b^2)#

#rArr 9(4a^2-6ab+2ab-3b^2)#

#rArr 9[2a(2a-3b)+b(2a-3b)]#

#rArr 9(2a-3b)(2a+b)#

May 19, 2017

#9(2a + b)(2a - 3b) #

Explanation:

#36a^2 - 36ab - 27b^2 = 9(4a^2 - 4ab - 3b^2) #
->#9# is a highest common factor for #36 and 27#

we try to find the product of factor for (4 * 3 = 12), then we get
#12 = 6 * 2, -6 + 2 = -4#
thereofore we replace #-4ab to -6ab + 2ab#

#9(4a^2 - 4ab - 3b^2) = 9(4a^2 -6ab + 2ab -3b^2)#
We separate into 2 portions and factor it.
1. #4a^2 - 6ab = 2a(2a - 3b) #
2. #2ab - 3b^2 = b(2a - 3b)#
it is correct when both of them have a same of # (2a - 3b)#,
therefore,
#(4a^2 -6ab + 2ab -3b^2) =2a(2a - 3b) +b(2a - 3b)= (2a + b)(2a - 3b)#

therefore,
#9(4a^2 -6ab + 2ab -3b^2) = 9(2a + b)(2a - 3b) #