What is the derivative of # y=sinx/(2+cosx)#?

1 Answer
May 19, 2017

#y' = frac(1 + 2 cos(x))((2 + cos(x))^(2))#

Explanation:

We have: #y = frac(sin(x))(2 + cos(x))#

This function can be differentiated using the "quotient rule":

#Rightarrow y' = frac((2 + cos(x)) cdot frac(d)(dx)(sin(x)) - (sin(x)) cdot frac(d)(dx)(2 + cos(x)))((2 + cos(x))^(2))#

#Rightarrow y' = frac((2 + cos(x)) cdot cos(x) - sin(x) cdot (- sin(x)))((2 + cos(x))^(2))#

#Rightarrow y' = frac(2 cos(x) + cos^(2)(x) + sin^(2)(x))((2 + cos(x))^(2))#

One of the Pythagorean identities is #cos^(2)(x) + sin^(2)(x) = 1#.

We can rearrange it to get:

#Rightarrow sin^(2)(x) = 1 - cos^(2)(x)#

Let's apply this rearranged identity:

#Rightarrow y' = frac(2 cos(x) + cos^(2)(x) + 1 - cos^(2)(x))((2 + cos(x))^(2))#

#Rightarrow y' = frac(1 + 2 cos(x))((2 + cos(x))^(2))#