How do you integrate #(3x^2+9x-4)/((x-1)(x^2+4x-1))# using partial fractions?

1 Answer
May 20, 2017

Please see the explanation.

Explanation:

Find the partial fractions.

#(3x^2+9x-4)/((x-1)(x^2+4x-1)) = A/(x-1)+(Bx+C)/(x^2+4x-1)#

#(3x^2+9x-4) = A(x^2+4x-1)+(Bx+C)(x-1)#

Eliminate B and C by letting x = 1:

#(3(1)^2+9(1)-4) = A((1)^2+4(1)-1)#

#8=A4#

#A = 2#

#(3x^2+9x-4) = 2(x^2+4x-1)+(Bx+C)(x-1)#

Eliminate B by letting x = 0:

#(3(0)^2+9(0)-4) = 2((0)^2+4(0)-1)+C((0)-1)#

#-4=-2-C#

#C = 2#

#(3x^2+9x-4) = 2(x^2+4x-1)+(Bx+2)(x-1)#

Let x = -1:

#(3(-1)^2+9(-1)-4) = 2((-1)^2+4(-1)-1)+(B(-1)+2)(-1-1)#

#-10=-8+2B-4#

#B = 1#

#int(3x^2+9x-4)/((x-1)(x^2+4x-1))dx = 2int1/(x-1)dx+int(x+2)/(x^2+4x-1)dx#

Multiply the second integral by 1/2 so that the numerator can be multiplied by 2:

#int(3x^2+9x-4)/((x-1)(x^2+4x-1))dx = 2int1/(x-1)dx+1/2int(2x+4)/(x^2+4x-1)dx#

Both integrals become the natural logarithm:

#int(3x^2+9x-4)/((x-1)(x^2+4x-1))dx = 2ln|x-1|+1/2ln|x^2+4x-1|+C#