How do I prove that the limit of this function is #1/n#? (#n# is a positive integer)
#lim_(x->0) ( ((1+x)^(1/n)-1)/x)#
1 Answer
May 21, 2017
We want to evaluate the limit:
# L = lim_(x->0) ((1+x)^(1/n)-1)/x #
If we put
# lim_(x rarr a) f(x)/g(x) #
is of an indeterminate form
# lim_(x rarr a) f(x)/g(x) = lim_(x rarr a) (f'(x))/(g'(x)) #
Hence, we have (as
# L = lim_(x->0) (1/n(1+x)^(1/n-1)-0)/1 #
# \ \ = lim_(x->0) 1/n(1+x)^(1/n-1) #
# \ \ = 1/n \ lim_(x->0) (1+x)^(1/n-1) #
# \ \ = 1/n * 1 #
# \ \ = 1/n # QED