Given f(x)=(2x+1)/(x-2) ,and x does not equal to 2.. find f^11(x)??

1 Answer
May 22, 2017

#f^((11))(x) = -5*(11!)*(x-2)^-12#

Explanation:

#f'(x) = -5/(x-2)^2# #" "# (by the quotient rule)

# = -5(x-2)^-2#

#f''(x) = 5(2)(x-2)^-3# #" "# (by power and chain rule)

#f^((3)) = -5(3*2)(x-2)^-4#

#f^((4)) = 5(4*3*2)(x-2)^-5#

In general

#f^((n)) = (-1)^n 5(n*(n-1)* * * 3*2)(x-2)^-(n+1)#

# = (-1)^n 5 (n!) (x-2)^-(n+1)#

So,

#f^((11))(x) = -5*(11!)*(x-2)^-12#

Note
#n! = n(n-1)(n-1) * * * 2*1# for positive integer #n#.