How do you simplify #\frac { 6v ^ { 5} } { 30v ^ { 4} }#?

1 Answer
May 22, 2017

See a solution process below:

Explanation:

First, rewrite the expression as:

#(6v^5)/((6 xx 5)v^4)#

Next, cancel like terms in the numerator and denominator:

#(color(red)(cancel(color(black)(6)))v^5)/((color(red)(cancel(color(black)(6))) xx 5)v^4) => v^5/(5v^4)#

Now, use these rules of exponents to complete the simplification:

#x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))# and #a^color(red)(1) = a#

#v^color(red)(5)/(5v^color(blue)(4)) = v^(color(red)(5)-color(blue)(4))/5 => v^color(red)(1)/5 = v/5#