First, rewrite the expression by factoring the numerator of the fraction on the left as:
#((x + 2)(x + 2))/(x^2 - 9) -: (x + 2)/(x - 3)#
Next, rewrite the expression by factoring the denominator of the fraction on the left as:
#((x + 2)(x + 2))/((x + 3)(x - 3)) -: (x + 2)/(x - 3)#
Next rewrite this expression as:
#(((x + 2)(x + 2))/((x + 3)(x - 3)))/((x + 2)/(x - 3))#
Then, use this rule for dividing fractions to divide and simplify:
#(color(red)(a)/color(blue)(b))/(color(green)(c)/color(purple)(d)) = (color(red)(a) xx color(purple)(d))/(color(blue)(b) xx color(green)(c))#
#(color(red)((x + 2)(x + 2))/color(blue)((x + 3)(x - 3)))/(color(green)(x + 2)/color(purple)(x - 3)) => (color(red)(((x + 2)(x + 2))) xx color(purple)((x -
3)))/(color(blue)(((x + 3)(x - 3))) xx color(green)((x + 2))) =>#
#(color(red)((cancel((x + 2))(x + 2))) xx color(purple)(cancel((x - 3))))/(color(blue)(((x + 3)cancel((x - 3)))) xx color(green)(cancel((x + 2)))) =>#
#(x + 2)/(x + 3)#