How do you simplify #\frac { a ^ { - 2} b ^ { 6} } { a ^ { 3} b ^ { - 1} }#?

1 Answer
May 23, 2017

See a solution process below:

Explanation:

First, rewrite the expression as:

#(a^-2/a^3)(b^6/b^-1)#

Next, use this rule of exponents to simplify the #x# term:

#x^color(red)(a)/x^color(blue)(b) = 1/x^(color(blue)(b)-color(red)(a))#

#(a^color(red)(-2)/a^color(blue)(3))(b^6/b^-1) => (1/a^(color(blue)(3)-color(red)(-2)))(b^6/b^-1) => (1/a^(color(blue)(3)+color(red)(2)))(b^6/b^-1) => (1/a^5)(b^6/b^-1)#

Now, use this rule of exponents to simplify the #b# term:

#x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))#

#(1/a^5)(b^color(red)(6)/b^color(blue)(-1)) => (1/a^5)(b^(color(red)(6)-color(blue)(-1))) => (1/a^5)(b^(color(red)(6)+color(blue)(1))) =>#

#(1/a^5)(b^7) => b^7/a^5#