What is the simplified form of #(sqrt(2)-sqrt(10))/(sqrt(2)+sqrt(10))# ?
2 Answers
None of the given options is correct.
Explanation:
The difference of squares identity can be written:
#a^2-b^2 = (a-b)(a+b)#
Hence we can rationalise the denominator of the given expression by multiplying both numerator and denominator by
#(sqrt(2)-sqrt(10))/(sqrt(2)+sqrt(10)) = (sqrt(2)-sqrt(10))^2/((sqrt(2)-sqrt(10))(sqrt(2)+sqrt(10)))#
#color(white)((sqrt(2)-sqrt(10))/(sqrt(2)+sqrt(10))) = ((sqrt(2))^2-2sqrt(2)sqrt(10)+(sqrt(10))^2)/((sqrt(2))^2-(sqrt(10))^2)#
#color(white)((sqrt(2)-sqrt(10))/(sqrt(2)+sqrt(10))) = (2-2sqrt(20)+10)/(2-10)#
#color(white)((sqrt(2)-sqrt(10))/(sqrt(2)+sqrt(10))) = (12-2sqrt(2^2*5))/(-8)#
#color(white)((sqrt(2)-sqrt(10))/(sqrt(2)+sqrt(10))) = (12-4sqrt(5))/(-8)#
#color(white)((sqrt(2)-sqrt(10))/(sqrt(2)+sqrt(10))) = -3/2+1/2sqrt(5)#
Explanation:
We have:
Let's rationalise the denominator:
It seems that none of the options match this.
Perhaps you made an error while typing the possible answers.