How do you use demoivre's theorem to simplify 4(1-sqrt3i)^3?

1 Answer
May 24, 2017

-32

Explanation:

DeMoivre's theorem for exponents says that any complex number z can be written as r(costheta+isintheta), or rcolor(white)"." "cis"(theta) for short.

It continues to say that when raising an imaginary number to a certain power, the result is:

z^n = r^n color(white)".""cis"(ntheta)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

To simplify this, let's first calculate (1-isqrt3)^3.

We find r by using Pythagoras' theorem:

r = sqrt(1^2+sqrt(3)^2) = sqrt4 = 2

We find theta by taking the inverse tangent of (Im(z))/(Re(z).

theta = tan^-1((-sqrt3)/(1))=-pi/3

So (1-isqrt3) = 2"cis"(-pi/3). Therefore:

(1-isqrt3)^3 = 2^3"cis"(3(-pi/3)) = 8"cis"(pi)

Finally, we expand "cis"(pi).

8"cis"(pi)=8cospi+8isinpi = 8(-1)+8i(0) = -8

And don't forget to multiply by 4!

-8*4 = -32

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

So 4(1-isqrt3)^3 = -32.

Final Answer