Is #(4, 5)# a solution to this system of equations? #20x + y = 11, and 5x + 4y = 18#

1 Answer
May 26, 2017

No, the solution is #(26/75,61/15) or x=26/75; y=61/15#

Explanation:

Using the two equations to check the given answer (4,5):

#20x+y=11# and then:#5x+4y=18#

#20(4) + 5 != 11# and then: #5(4) + 4(5) !=18#

#80 + 5 !=11# and then: #20 + 20 != 18#

#85 != 11# and then: #40 != 18#

The solution is found here:

#20x+y=11#
#5x+4y=18 to #multiply both sides by #-4#

#cancel(+20x)+y=11#
#cancel(-20x)-16y=-72 to# add

#cancel-15y=cancel-61#

#y=61/15#

#20x+y=11 to# multiply both sides by #4#
#5x+4y=18#

#80xcancel(+4y)=44#
#-5xcancel(-4y)=-18 to # subtract

#75x=26#

#x=26/75#

Using the two equations to check the new answer:

#20x+y=11#
#cancel(20)4(26/(cancel(75)15)) + (61/15)= 11#

#104/15 + 61/15= 11#

#165/15=11#

#11=11#

and then: #5x+4y=18#

#5(26/75) + 4(61/15) =18#

#cancel5(26/(cancel(75)15)) + 244/15= 18#

#270/15 = 18#

#18 = 18#