How do you solve #\frac { 3x - 1} { 3} + \frac { 3} { 4} = \frac { x + 1} { 3}#?

1 Answer
May 27, 2017

See a solution process below:

Explanation:

First, multiply each side of the equation by #color(red)(12)# to eliminate the fractions while keeping the equation balanced. #color(red)(12)# is the Lowest Common Denominator of the three fractions.

#color(red)(12)((3x - 1)/3 + 3/4) = color(red)(12) xx (x + 1)/3#

#(color(red)(12) xx (3x - 1)/3) + (color(red)(12) xx 3/4) = cancel(color(red)(12))4 xx (x + 1)/color(red)(cancel(color(black)(3)))#

#(cancel(color(red)(12))4 xx (3x - 1)/color(red)(cancel(color(black)(3)))) + 36/4 = 4(x + 1)#

#4(3x - 1) + 9 = (4 xx x) + (4 xx 1)#

#(4 xx 3x) - (4 xx 1) + 9 = 4x + 4#

#12x - 4 + 9 = 4x + 4#

#12x + 5 = 4x + 4#

Next, subtract #color(red)(5)# and #color(blue)(4x)# from each side of the equation to isolate the #x# term while keeping the equation balanced:

#-color(blue)(4x) + 12x + 5 - color(red)(5) = -color(blue)(4x) + 4x + 4 - color(red)(5)#

#(-color(blue)(4) + 12)x + 0 = 0 - 1#

#8x = -1#

Now, divide each side of the equation by #color(red)(8)# to solve for #x# while keeping the equation balanced:

#(8x)/color(red)(8) = -1/color(red)(8)#

#(color(red)(cancel(color(black)(8)))x)/cancel(color(red)(8)) = -1/8#

#x = -1/8#