How do you divide #(b ^ { 3} + 8b ^ { 2} + 21b + 17) \div ( b + 4)#?
1 Answer
May 28, 2017
Explanation:
#"one way is to use the divisor as a factor in the numerator"#
#"consider the numerator"#
#color(red)(b^2)(b+4)color(magenta)(-4b^2)+8b^2+21b+17#
#=color(red)(b^2)(b+4)color(red)(+4b)(b+4)color(magenta)(-16b)+21b+17#
#=color(red)(b^2)(b+4)color(red)(+4b)(b+4)color(red)(+5)(b+4)color(magenta)(-20)+17#
#=color(red)(b^2)(b+4)color(red)(+4b)(b+4)color(red)(+5)(b+4)-3#
#"quotient "=color(red)(b^2+4b+5)," remainder "=-3#
#rArr(b^3+8b^2+21b+17)/(b+4)=b^2+4b+5-3/(b+4)#