How do you simplify #\frac { - 15a ^ { 5} b ^ { - 5} } { 55a ^ { - 2} b ^ { 3} } #?

1 Answer
May 31, 2017

See a solution process below:

Explanation:

First, rewrite the expression as:

#-15/55(a^5/a^-2)(b^-5/b^3) =>#

#(5 xx -3)/(5 xx 11)(a^5/a^-2)(b^-5/b^3) =>#

#(color(red)(cancel(color(black)(5))) xx -3)/(color(red)(cancel(color(black)(5))) xx 11)(a^5/a^-2)(b^-5/b^3) =>#

#-3/11(a^5/a^-2)(b^-5/b^3)#

Next, use this rule of exponents to simplify the #a# term:

#x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))#

#-3/11(a^color(red)(5)/a^color(blue)(-2))(b^-5/b^3) =>#

#-3/11(a^(color(red)(5)-color(blue)(-2)))(b^-5/b^3) =>#

#-3/11(a^(color(red)(5)+color(blue)(2)))(b^-5/b^3) =>#

#-3/11(a^7)(b^-5/b^3) =>#

#-(3a^7)/11(b^-5/b^3)#

Now, use this rule of exponents to complete the simplification of the #b# term:

#x^color(red)(a)/x^color(blue)(b) = 1/x^(color(blue)(b)-color(red)(a))#

#-(3a^7)/11(b^color(red)(-5)/b^color(blue)(3)) =>#

#-(3a^7)/11(1/b^(color(blue)(3)-color(red)(-5))) =>#

#-(3a^7)/11(1/b^(color(blue)(3)+color(red)(5))) =>#

#-(3a^7)/11(1/b^8) =>#

#-(3a^7)/(11b^8)#