How do you solve #\frac { 3x } { 5} - 5= 5x#?
1 Answer
Jun 2, 2017
Explanation:
#"to eliminate the fraction, multiply ALL terms by 5"#
#(cancel(5)xx(3x)/cancel(5))-(5xx5)=(5xx5x)#
#rArr3x-25=25xlarrcolor(red)" no fraction"#
#"subtract 3x from both sides"#
#cancel(3x)cancel(-3x)-25=25x-3x#
#rArr22x=-25larr" reversing the equation"#
#"divide both sides by 22"#
#(cancel(22)color(white)(x)x)/cancel(22)=(-25)/22#
#rArrx=-25/22#
#color(blue)"As a check"# Substitute this value into the equation and if both sides are equal then it is the solution.
#(3xx-25/22xx1/5)-5=-15/22-110/22=-125/22#
#"right side "=5xx-25/22=-125/22=" left side"#
#rArrx=-25/22" is the solution"#