Let #f(t) = [t+ sqrt(3)]/[1 - tsqrt(3)]#. Prove that #f# is a cyclic function?

1 Answer
Jun 4, 2017

See below.

Explanation:

A function is cyclic if it satisty the conditon:

#f^n(x)=x#

#n# is the order (not the nth derivative) that is the number of times the function is applied to itself before the cycle is complete.

#f(t)=(t+sqrt(3))/(1-tsqrt(3))#
#f^1(t)=((t+sqrt(3))/(1-tsqrt(3)) +sqrt(3))/(1-(t+sqrt(3))/(1-tsqrt(3)) sqrt(3))#
#=(t+sqrt(3)+sqrt(3)-3t)/(1-tsqrt(3)-tsqrt(3)-3)#
#=(sqrt(3)-t) /(-1-tsqrt(3))#

#f^2(t)=(sqrt(3)-(t+sqrt(3))/(1-tsqrt(3)))/(-1-(t+sqrt(3))/(1-tsqrt(3))sqrt(3))#
#=(sqrt(3)-3t-t-sqrt(3))/(-1+tsqrt(3)-tsqrt(3)-3)=(-4t)/(-4)=t#

Thus it is proven that the function is cyclic.

QED

An example of a cycle:
#f(1)=(1+sqrt(3))/(1-(1)sqrt(3))=-3.732#

#f(-3.732)=-0.268#

#f(-0.268)=1#

Notice how it circles back to the first value.