How do you simplify #\frac { 4a b c } { 2c ^ { 2} }#?

1 Answer
Jun 4, 2017

See a solution process below:

Explanation:

First, simplify the constants as:

#(4abc)/(2c^2) = ((2 xx 2)abc)/(2c^2) = ((color(red)(cancel(color(black)(2))) xx 2)abc)/(color(red)(cancel(color(black)(2)))c^2) =#

#(2abc)/c^2#

Now, use these rules of exponents to simplify the #c# term:

#a = a^color(red)(1)# and #x^color(red)(a)/x^color(blue)(b) = 1/x^(color(blue)(b)-color(red)(a))# and #a^color(red)(1) = a#

#(2abc)/c^2 = (2abc^color(red)(1))/c^color(blue)(2) = (2ab)/c^(color(blue)(2)-color(red)(1)) = (2ab)/c^1 = (2ab)/c#