How do you expand #(m+n)^4#? Precalculus The Binomial Theorem The Binomial Theorem 1 Answer Mr.X Jun 5, 2017 #m^4+4m^3n+6m^2n^2+4mn^3+n^4# Explanation: #(x+y)^n=sum_(r=0)^n#(n choose r)#x^(n-r)y^r# Answer link Related questions What is the binomial theorem? How do I use the binomial theorem to expand #(d-4b)^3#? How do I use the the binomial theorem to expand #(t + w)^4#? How do I use the the binomial theorem to expand #(v - u)^6#? How do I use the binomial theorem to find the constant term? How do you find the coefficient of x^5 in the expansion of (2x+3)(x+1)^8? How do you find the coefficient of x^6 in the expansion of #(2x+3)^10#? How do you use the binomial series to expand #f(x)=1/(sqrt(1+x^2))#? How do you use the binomial series to expand #1 / (1+x)^4#? How do you use the binomial series to expand #f(x)=(1+x)^(1/3 )#? See all questions in The Binomial Theorem Impact of this question 5179 views around the world You can reuse this answer Creative Commons License