A triangle has corners at #(1, 2 )#, #( 2, 3 )#, and #( 1 , 5 )#. If the triangle is dilated by # 4 x# around #(3, 1)#, what will the new coordinates of its corners be?
2 Answers
The new coordinates are
Explanation:
Let the corners of the triangle be
And the point
Let the corners of the triangle be
So,
Explanation:
#"let the vertices of the triangle be"#
#A(1,2),B(2,3)" and " C(1,5)#
#"and A',B',C' be the images of A,B and C respectively"#
#"under the dilatation"#
#"let the centre of dilatation be "D(color(magenta)(3),color(blue)(1))#
#• vec(DA)=ula-uld=((1),(2))-((3),(1))=((-2),(1))#
#rArrvec(DA')=color(red)(4)vec(DA)=color(red)(4)((-2),(1))=((-8),(4))#
#rArrA'=(color(magenta)(3)-8,color(blue)(1)+4)=(-5,5)#
#• vec(DB)=ulb-uld=((2),(3))-((3),(1))=((-1),(2))#
#rArrvec(DB')=color(red)(4)vec(DB)=color(red)(4)((-1),(2))=((-4),(8))#
#rArrB'=(color(magenta)(3)-4,color(blue)(1)+8)=(-1,9)#
#• vec(DC)=ulc-uld=((1),(5))-((3),(1))=((-2),(4))#
#rArrvec(DC')=color(red)(4)vec(DC)=color(red)(4)((-2),(4))=((-8),(16))#
#rArrC'=(color(magenta)(3)-8,color(blue)(1)+16))=(-5,17)#