What is the arclength of #f(x)=(x-2)/(x^2+3)# on #x in [-1,0]#?
1 Answer
Jun 9, 2017
#s ~~ 1.013# using technology.
In cartesian,
#s = int_(a)^(b) sqrt(1 + ((dy)/(dx))^2)dx#
So, for
#s = int_(-1)^(0) sqrt(1 + (d/(dx)[(x-2)/(x^2 + 3)])^2)dx#
The derivative of this function is:
#(dy)/(dx) = (x-2) cdot d/(dx)[1/(x^2 + 3)] + 1/(x^2 + 3) cdot cancel(d/(dx)[x-2])^(1)#
#= -(2x(x-2))/(x^2 + 3)^2 + 1/(x^2 + 3)#
#= (3 - 2x(x-2) + x^2)/(x^2 + 3)^2#
#= (-x^2 + 4x + 3)/(x^2 + 3)^2#
So, the square of it is:
#((dy)/(dx))^2 = ((-x^2 + 4x + 3)/(x^2 + 3)^2)^2#
Plugging it in:
#s = int_(0)^(-1) sqrt(1 + ((-x^2 + 4x + 3)/(x^2 + 3)^2)^2)dx#
... Nope, not doable with elementary functions.
So, we will just use Wolfram Alpha to obtain:
#color(blue)(s ~~ 1.013)#