How do you differentiate #y=(2^x-x^2)/(1-log_3x)#?

1 Answer
Jun 10, 2017

#dy/dx=((1-log_3x)(2^xln2-2x)+(2^x-x^2)/(xln3))/(1-log_3x)^2#

Explanation:

#color(orange)"Reminders"#

#• d/dx(a^x)=a^xlna#

#• d/dx(log_ax)=1/(xlna)#

#"differentiate using the "color(blue)"quotient rule"#

#"Given " y=(g(x))/(h(x))" then"#

#dy/dx=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larr" quotient rule"#

#"g(x)=2^x-x^2rArrg'(x)=2^xln2-2x#

#h(x)=1-log_3xrArrh'(x)=-1/(xln3)#

#rArrdy/dx=((1-log_3x)(2^xln2-2x)-(2^x-x^2)(-1/(xln3)))/(1-log_3x)^2#