What is the derivative of #int_2^(cosx) \ sin^2(2t) \ dt#?

2 Answers
Jun 11, 2017

#" The Reqd. Deriv.="-sinx*sin^2(2cosx).#

Explanation:

Let, #f(x)=int_2^cosx sin^2(2t)dt.#

Now, #sin^2theta=(1-cos2theta)/2,# we have,

#f(x)=int_2^cosx sin^2(2t)dt=int_2^cosx (1-cos4t)/2 dt,#

#=1/2[t-1/4sin4t]_2^cosx,#

#=1/2[{cosx-1/4sin(4cosx)}-{2-1/4sin8}],#

# rArr f(x)=1/2{cosx-1/4sin(4cosx)}-1+1/8sin8.#

Therefore, the Reqd. Deriv.#=d/dxint_2^cosx sin^2(2t)dt.#

#=d/dx{f(x)},#

#=d/dx[1/2{cosx-1/4sin(4cosx)}-1+1/8sin8],#

#=1/2[d/dx cosx-d/dx 1/4sin(4cosx)]-0,#

#=1/2[-sinx-1/4cos(4cosx)*d/dx(4cosx),...[because," the Chain Rule]"#

#=-sinx/2-1/8cos(4cosx)*(-4sinx),#

#=-sinx/2+1/2sinxcos(4cosx),#

#=-sinx/2{1-cos(4cosx)}=-sinx/2(1-cos4theta),# say,

where, #theta=cosx,"#

#=-sinx/2(2sin^2 2theta),#

#rArr" the Reqd. Deriv.="-sinx*sin^2(2cosx).#

Enjoy Maths.!

Jun 11, 2017

# d/dx \ int_2^(cosx) \ sin^2(2t) \ dt = -sinx \ sin^2(2cosx) #

Explanation:

If asked to find the derivative of an integral then you should not evaluate the integral but instead use the fundamental theorem of Calculus.

The FTOC tells us that:

# d/dx \ int_a^x \ f(t) \ dt = f(x) # for any constant #a#

(ie the derivative of an integral gives us the original function back).

We are asked to find:

# d/dx \ int_2^(cosx) \ sin^2(2t) \ dt # ..... [A}

(notice the upper bounds of the first integral are not in the correct format for the FTOC to be applied, directly). We can manipulate the definite integral using a substitution and the chain rule. Let:

# u=cosx => (du)/dx = -sinx #

The substituting into the integral [A], and applying the chain rule, we get:

# d/dx \ int_2^(cosx) \ sin^2(2t) \ dt = d/dx \ int_2^u \ sin^2(2t) \ dt #

# " " = (du)/dx*d/(du) \ int_2^u \ sin^2(2t) \ dt #

# " " = -sinx \ d/(du) \ int_2^u \ sin^2(2t) \ dt #

And now the derivative of the integral is in the correct form for the FTOC to be applied, giving:

# d/dx \ int_2^(cosx) \ sin^2(2t) \ dt = -sinx \ sin^2(2u) #

And restoring the initial substitution we get:

# d/dx \ int_2^(cosx) \ sin^2(2t) \ dt = -sinx \ sin^2(2cosx) #

And note that the given answer is incorrect!