How do you simplify #\frac { 30b ^ { 14} } { 45b ^ { 10} }#?

1 Answer
Jun 14, 2017

See a solution process below:

Explanation:

First, factor and simplify the constants as:

#(30b^14)/(45b^10) => ((15 xx 2)b^14)/((15 xx 3)b^10) => ((color(red)(cancel(color(black)(15))) xx 2)b^14)/((color(red)(cancel(color(black)(15))) xx 3)b^10) =>#

#(2b^14)/(3b^10)#

Now, use this rule for exponents to simplify the #b# terms:

#x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))#

#(2b^color(red)(14))/(3b^color(blue)(10)) = (2b^(color(red)(14)-color(blue)(10)))/3 => (2b^4)/3# or #2/3b^4#