#f=X^4+3X^3+aX^2-3X+1;ainRR#. Which are values of #a# for which #x_1^2+x_2^2+x_3^2+x_4^2=12#? Where #x_1,x_2,x_3,x_4# are roots of #f(x)=0#.
1 Answer
Jun 16, 2017
Explanation:
Given:
#f(x) = x^4+3x^3+ax^2-3x+1#
#color(white)(f(x)) = (x-x_1)(x-x_2)(x-x_3)(x-x_4)#
#color(white)(f(x)) = x^4-(x_1+x_2+x_3+x_4)x^3+(x_1x_2+x_1x_3+x_1x_4+x_2x_3+x_2x_4+x_3x_4)x^2-(x_1x_2x_3+x_2x_3x_4+x_3x_4x_1+x_4x_1x_2)x+x_1x_2x_3x_4#
Equating coefficients, we have:
#{(x_1+x_2+x_3+x_4=-3),(x_1x_2+x_1x_3+x_1x_4+x_2x_3+x_2x_4+x_3x_4=a),(x_1x_2x_3+x_2x_3x_4+x_3x_4x_1+x_4x_1x_2=3),(x_1x_2x_3x_4=1):}#
Note that:
#9 = (-3)^2#
#color(white)(9) = (x_1+x_2+x_3+x_4)^2#
#color(white)(9) = x_1^2+x_2^2+x_3^2+x_4^2+2(x_1x_2+x_1x_3+x_1x_4+x_2x_3+x_2x_4+x_3x_4)#
#color(white)(9) = 12+2a#
Hence:
#2a = 9-12 = -3#
So:
#a = -3/2#