Step 1) Solve the first equation for #x#:
#-x - 3y = -8#
#-x - 3y + color(red)(3y) = -8 + color(red)(3y)#
#-x - 0 = -8 + 3y#
#-x = -8 + 3y#
#color(red)(-1) xx -x = color(red)(-1)(-8 + 3y)#
#x = (color(red)(-1) xx -8) + (color(red)(-1) xx 3y)#
#x = 8 - 3y#
Step 2) Substitute #(8 - 3y)# for #x# in the second equation and solve for #y#:
#-2x - 4y = -10# becomes:
#-2(8 - 3y) - 4y = -10#
#(-2 * 8) + (-2 * -3y) - 4y = -10#
#-16 + 6y - 4y = -10#
#-16 + (6 - 4)y = -10#
#-16 + 2y = -10#
#color(red)(16) - 16 + 2y = color(red)(16) - 10#
#0 + 2y = 6#
#2y = 6#
#(2y)/color(red)(2) = 6/color(red)(2)#
#(color(red)(cancel(color(black)(2)))y)/cancel(color(red)(2)) = 3#
#y = 3#
Step 3) Substitute #3# for #y# in the solution to the first equation at the end of Step 1 and calculate #x#:
#x = 8 - 3y# becomes:
#x = 8 - (3 * 3)#
#x = 8 - 9#
#x = -1#
The solution is: #x = -1# and #y = 3# or #(-1, 3)#