How do you simplify #(4g^10)^4#?

1 Answer
Jun 18, 2017

See a solution process below:

Explanation:

Use these two rules of exponents to simplify this expression:

#a = a^color(red)(1)# and #(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))#

#(4g^10)^4 => (4^color(red)(1)g^color(red)(10))^color(blue)(4) => 4^(color(red)(1)xxcolor(blue)(4))g^(color(red)(10)xxcolor(blue)(4)) => 4^4g^40 =>#

#256g^40#