How do you evaluate the integral #int arctanx/x^2#?
1 Answer
Jun 20, 2017
Explanation:
#I=intarctanx/x^2dx#
Use integration by parts. Let:
#u=arctanx" "=>" "du=1/(x^2+1)dx#
#dv=1/x^2dx" "=>" "v=-1/x#
Then:
#I=uv-intvdu#
#I=-arctanx/x+intdx/(x(x^2+1))#
Performing partial fractions:
#1/(x(x^2+1))=A/x+(Bx+C)/(x^2+1)#
#1=A(x^2+1)+(Bx+C)x#
#1=x^2(A+B)+x(C)+A#
Comparing coefficients,
#{(A+B=0),(C=0),(A=1):}#
So
#1/(x(x^2+1))=1/x+(-x)/(x^2+1)#
So:
#I=-arctanx/x+intdx/x-intx/(x^2+1)dx#
#I=-arctanx/x+lnabsx-1/2int(2x)/(x^2+1)dx#
#I=-arctanx/x+lnabsx-1/2lnabs(x^2+1)+C#